evalio.datasets
For more information about the datasets included in evalio, see the included datasets section.
Classes:
-
Dataset–The base class for all datasets.
-
DatasetIterator–This is the base class for iterating over datasets.
-
RawDataIter–An iterator for loading from python iterables.
-
RosbagIter–An iterator for loading from rosbag files.
-
BotanicGarden–Dataset taken from a botanical garden, specifically for testing unstructured environments. Ground truth is gathered using a survey grade lidar.
-
CUMulti–Dataset collected by a ground robot (AgileX - Hunter) on the University of Colorado Boulder Campus.
-
EnWide–Dataset taken in purposely degenerate locations such as a field, intersections, tunnels, and runways. All data comes directly from the Ouster unit.
-
HeLiPR–Self-driving car dataset taken in urban environments. Ground truth is generated using filtering of an RTK-GNSS system.
-
Hilti2022–Sequences with ground truth taken from the Hilti 2022 SLAM Challenge, mostly taken from indoors.
-
MultiCampus–Data taken from a variety of campus (KTH, NTU, TUHH) in Asia and Europe at different seasons, at day and night, and with an ATV and handheld platform.
-
NewerCollege2020–Dataset taken from outdoor Oxford Campus. Ground truth is generated using ICP matching against a laser scanner.
-
NewerCollege2021–Dataset outdoors on oxford campus with a handheld device consisting of an alphasense core and a Ouster lidar.
-
OxfordSpires–Dataset taken both indoors and outdoors on the Oxford campus.
-
DatasetNotFound–Exception raised when a dataset is not found.
-
SequenceNotFound–Exception raised when a sequence is not found.
Functions:
-
get_data_dir–Get the global data directory. This is where downloaded data is stored.
-
set_data_dir–Set the global location where datasets are stored. This will be used to store the downloaded data.
-
all_datasets–Get all registered datasets.
-
get_dataset–Get a registered dataset by name.
-
all_sequences–Get all sequences from all registered datasets.
-
get_sequence–Get a registered sequence by name.
-
register_dataset–Register a dataset.
Dataset
Bases: StrEnum
The base class for all datasets.
This class provides an interface for loading datasets, including loading parameters and iterating over measurements. All datasets are string enums, where each enum member represents a trajectory sequence in the dataset.
Methods:
-
data_iter–Provides an iterator over the dataset's measurements.
-
ground_truth_raw–Retrieves the raw ground truth trajectory, as represented in the ground truth frame.
-
imu_T_lidar–Returns the transformation from IMU to Lidar frame.
-
imu_T_gt–Retrieves the transformation from IMU to ground truth frame.
-
imu_params–Specifies the parameters of the IMU.
-
lidar_params–Specifies the parameters of the Lidar.
-
files–Return list of files required to run this dataset.
-
url–Webpage with the dataset information.
-
environment–Environment where the dataset was collected.
-
vehicle–Vehicle used to collect the dataset.
-
quick_len–Hardcoded number of lidar scans in the dataset, rather than computing by loading all the data (slow).
-
download–Method to download the dataset.
-
dataset_name–Name of the dataset, in snake case.
-
is_downloaded–Verify if the dataset is downloaded.
-
ground_truth–Get the ground truth trajectory in the IMU frame, rather than the ground truth frame as returned in ground_truth_raw.
-
__len__–Return the number of lidar scans.
-
__iter__–Main interface for iterating over measurements of all types.
-
imu–Iterate over just IMU measurements.
-
lidar–Iterate over just Lidar measurements.
-
get_one_lidar–Get a single Lidar measurement.
-
get_one_imu–Get a single IMU measurement.
-
sequences–All sequences in the dataset.
-
size_on_disk–Shows the size of the dataset on disk, in GB.
Attributes:
-
seq_name(str) –Name of the sequence, in snake case.
-
full_name(str) –Full name of the dataset, including the dataset name and sequence name.
-
folder(Path) –The folder in the global dataset directory where this dataset is stored.
Source code in python/evalio/datasets/base.py
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 | |
seq_name
property
Name of the sequence, in snake case.
Returns:
-
str–Name of the sequence.
full_name
property
Full name of the dataset, including the dataset name and sequence name.
Example: "dataset_name/sequence_name"
Returns:
-
str–Full name of the dataset.
folder
property
The folder in the global dataset directory where this dataset is stored.
Returns:
-
Path–Path to the dataset folder.
data_iter
data_iter() -> DatasetIterator
Provides an iterator over the dataset's measurements.
Returns:
-
DatasetIterator–An iterator that yields measurements from the dataset.
ground_truth_raw
ground_truth_raw() -> Trajectory
Retrieves the raw ground truth trajectory, as represented in the ground truth frame.
Returns:
-
Trajectory–The raw ground truth trajectory data.
imu_T_lidar
imu_T_lidar() -> SE3
Returns the transformation from IMU to Lidar frame.
Returns:
-
SE3–Transformation from IMU to Lidar frame.
imu_T_gt
imu_T_gt() -> SE3
Retrieves the transformation from IMU to ground truth frame.
Returns:
-
SE3–Transformation from IMU to ground truth frame.
imu_params
imu_params() -> ImuParams
lidar_params
lidar_params() -> LidarParams
files
Return list of files required to run this dataset.
If a returned type is a Path, it will be checked as is. If it is a string, it will be prepended with folder.
Returns:
-
Sequence[str | Path]–List of files required to run this dataset.
Source code in python/evalio/datasets/base.py
url
staticmethod
environment
Environment where the dataset was collected.
Returns:
-
str–Environment where the dataset was collected.
vehicle
quick_len
Hardcoded number of lidar scans in the dataset, rather than computing by loading all the data (slow).
Returns:
-
Optional[int]–Number of lidar scans in the dataset. None if not available.
Source code in python/evalio/datasets/base.py
download
Method to download the dataset.
Completely optional to implement, although most datasets do.
Raises:
-
NotImplementedError–If not implemented.
Source code in python/evalio/datasets/base.py
dataset_name
classmethod
Name of the dataset, in snake case.
This is the name that will be used when parsing directly from a string. Currently is automatically generated from the class name, but can be overridden.
Returns:
-
str–Name of the dataset.
Source code in python/evalio/datasets/base.py
is_downloaded
Verify if the dataset is downloaded.
Returns:
-
bool–True if the dataset is downloaded, False otherwise.
Source code in python/evalio/datasets/base.py
ground_truth
ground_truth() -> Trajectory[GroundTruth]
Get the ground truth trajectory in the IMU frame, rather than the ground truth frame as returned in ground_truth_raw.
Returns:
-
Trajectory[GroundTruth]–The ground truth trajectory in the IMU frame.
Source code in python/evalio/datasets/base.py
__len__
Return the number of lidar scans.
If quick_len is available, it will be used. Otherwise, it will load the entire dataset to get the length.
Returns:
-
int–Number of lidar scans.
Source code in python/evalio/datasets/base.py
__iter__
Main interface for iterating over measurements of all types.
Returns:
-
Iterator[Measurement]–Iterator of all measurements (IMU and Lidar).
Source code in python/evalio/datasets/base.py
imu
imu() -> Iterable[ImuMeasurement]
Iterate over just IMU measurements.
Returns:
-
Iterable[ImuMeasurement]–Iterator of IMU measurements.
lidar
lidar() -> Iterable[LidarMeasurement]
Iterate over just Lidar measurements.
Returns:
-
Iterable[LidarMeasurement]–Iterator of Lidar measurements.
get_one_lidar
get_one_lidar(idx: int = 0) -> LidarMeasurement
Get a single Lidar measurement.
Note, this can be expensive to compute, as it will iterate over the entire dataset until it finds the measurement.
Parameters:
-
idx(int, default:0) –Index of measurement to get. Defaults to 0.
Returns:
-
LidarMeasurement–The Lidar measurement at the given index.
Source code in python/evalio/datasets/base.py
get_one_imu
get_one_imu(idx: int = 0) -> ImuMeasurement
Get a single IMU measurement.
Note, this can be expensive to compute, as it will iterate over the entire dataset until it finds the measurement.
Parameters:
-
idx(int, default:0) –Index of measurement to get. Defaults to 0.
Returns:
-
ImuMeasurement–The IMU measurement at the given index.
Source code in python/evalio/datasets/base.py
sequences
classmethod
sequences() -> list[Dataset]
size_on_disk
Shows the size of the dataset on disk, in GB.
Returns:
-
Optional[float]–Size of the dataset on disk, in GB. None if the dataset is not downloaded.
Source code in python/evalio/datasets/base.py
DatasetIterator
Bases: Iterable[Measurement]
This is the base class for iterating over datasets.
This class is the main interface used to iterate over the dataset's measurements. It provides an interface for iterating over IMU and Lidar measurements, as well as all measurements interleaved. This allows for standardizing access to loading data, while allowing for loading parameters in Dataset without having to load the data. Generally, will be created by the Dataset.data_iter method.
Methods:
-
imu_iter–Main interface for iterating over IMU measurements.
-
lidar_iter–Main interface for iterating over Lidar measurements.
-
__iter__–Main interface for iterating over all measurements.
-
__len__–Number of lidar scans.
Source code in python/evalio/datasets/base.py
imu_iter
imu_iter() -> Iterator[ImuMeasurement]
Main interface for iterating over IMU measurements.
Yields:
-
ImuMeasurement–Iterator of IMU measurements.
lidar_iter
lidar_iter() -> Iterator[LidarMeasurement]
Main interface for iterating over Lidar measurements.
Yields:
-
LidarMeasurement–Iterator of Lidar measurements.
__iter__
Main interface for iterating over all measurements.
Yields:
-
Measurement–Iterator of all measurements (IMU and Lidar).
RawDataIter
Bases: DatasetIterator
An iterator for loading from python iterables.
Interleaves imu and lidar iterables. Allows for arbitrary data to be loaded and presented in a consistent manner for the base Dataset class. Has identical methods to DatasetIterator.
Methods:
-
__init__–Args:
Source code in python/evalio/datasets/loaders.py
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 | |
__init__
__init__(
iter_lidar: Iterator[LidarMeasurement],
iter_imu: Iterator[ImuMeasurement],
num_lidar: int,
)
Parameters:
-
iter_lidar(Iterator[LidarMeasurement]) –An iterator over LidarMeasurement
-
iter_imu(Iterator[ImuMeasurement]) –An iterator over ImuMeasurement
-
num_lidar(int) –The number of lidar measurements
from evalio.datasets.loaders import RawDataIter
from evalio.types import ImuMeasurement, LidarMeasurement, Stamp
import numpy as np
# Create some fake data
imu_iter = (
ImuMeasurement(Stamp.from_sec(i), np.zeros(3), np.zeros(3))
for i in range(10)
)
lidar_iter = (LidarMeasurement(Stamp.from_sec(i + 0.1)) for i in range(10))
# Create the iterator
rawdata = RawDataIter(imu_iter, lidar_iter, 10)
Source code in python/evalio/datasets/loaders.py
RosbagIter
Bases: DatasetIterator
An iterator for loading from rosbag files.
This is a wrapper around the rosbags library, with some niceties for converting ros PointCloud2 messages to a standardized format. Has identical methods to DatasetIterator.
Methods:
-
__init__–Args:
Source code in python/evalio/datasets/loaders.py
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 | |
__init__
__init__(
path: Path,
lidar_topic: str,
imu_topic: str,
lidar_params: LidarParams,
type_store: Optional[Stores] = None,
lidar_format: Optional[LidarFormatParams] = None,
custom_col_func: Optional[
Callable[[LidarMeasurement], None]
] = None,
)
Parameters:
-
path(Path) –Location of rosbag file(s) or dir(s). If a directory is passed containing multiple bags (ros1 or ros2), all will be loaded.
-
lidar_topic(str) –Name of lidar topic.
-
imu_topic(str) –Name of imu topic.
-
lidar_params(LidarParams) –Lidar parameters, can be gotten from lidar_params.
-
type_store(Optional[Stores], default:None) –Additional type store to be loaded into rosbags. Defaults to None.
-
lidar_format(Optional[LidarFormatParams], default:None) –Various parameters for how lidar data is stored. If not specified, most will try to be inferred. We strongly recommend setting this to ensure data is standardized properly. Defaults to None.
-
custom_col_func(Optional[Callable[[LidarMeasurement], None]], default:None) –Function to put the point cloud in row major format. Will generally not be needed, except for strange default orderings. Defaults to None.
Raises:
-
FileNotFoundError–If the path is a directory and no .bag files are found.
-
ValueError–If the lidar or imu topic is not found in the bag file.
Source code in python/evalio/datasets/loaders.py
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 | |
BotanicGarden
Bases: Dataset
Dataset taken from a botanical garden, specifically for testing unstructured environments. Ground truth is gathered using a survey grade lidar.
Note, there is no automatic downloader for this dataset due to being uploaded on onedrive. Data can be downloaded manually and placed in the correct folder in EVALIO_DATA.
Additionally, we only include the public datasets here; more are potentially available upon request.
Source code in python/evalio/datasets/botanic_garden.py
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 | |
CUMulti
Bases: Dataset
Dataset collected by a ground robot (AgileX - Hunter) on the University of Colorado Boulder Campus.
Source code in python/evalio/datasets/cumulti.py
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 | |
EnWide
Bases: Dataset
Dataset taken in purposely degenerate locations such as a field, intersections, tunnels, and runways. All data comes directly from the Ouster unit.
Note, this dataset does not have ground truth orientation, only ground truth positional values taken from a Leica MS60 Prism.
Source code in python/evalio/datasets/enwide.py
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 | |
HeLiPR
Bases: Dataset
Self-driving car dataset taken in urban environments. Ground truth is generated using filtering of an RTK-GNSS system.
The vehicle had multiple lidar sensors mounted; we utilize the high resolution Ouster at the top of the vehicle.
Source code in python/evalio/datasets/helipr.py
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 | |
Hilti2022
Bases: Dataset
Sequences with ground truth taken from the Hilti 2022 SLAM Challenge, mostly taken from indoors.
Source code in python/evalio/datasets/hilti_2022.py
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 | |
MultiCampus
Bases: Dataset
Data taken from a variety of campus (KTH, NTU, TUHH) in Asia and Europe at different seasons, at day and night, and with an ATV and handheld platform.
Ground truth was measured using a continuous optimization of lidar scans matched against a laser scanner map.
Source code in python/evalio/datasets/multi_campus.py
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 | |
NewerCollege2020
Bases: Dataset
Dataset taken from outdoor Oxford Campus. Ground truth is generated using ICP matching against a laser scanner.
Note, there have been some reports that the laser scanner and data were collected months apart, which may have caused some inaccuracies in the ground truth data.
There are two IMUs on the handheld device, but the realsense IMU is not time-synced with the lidar data. Therefore, we utilize the Ouster IMU data instead.
Source code in python/evalio/datasets/newer_college_2020.py
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 | |
NewerCollege2021
Bases: Dataset
Dataset outdoors on oxford campus with a handheld device consisting of an alphasense core and a Ouster lidar. Ground truth is captured ICP matching against a laser scanner map.
Note there are two IMUs present; we utilize the Ouster IMU (ICM-20948)) instead of the alphasense one (Bosch BMI085). We expect the Ouster IMU to have more accurate extrinsics and the specs between the two IMUs are fairly similar.
Source code in python/evalio/datasets/newer_college_2021.py
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 | |
OxfordSpires
Bases: Dataset
Dataset taken both indoors and outdoors on the Oxford campus.
Note, we skip over a number of trajectories due to missing ground truth data.
Additionally, some of the ground truth has poses within a few milliseconds of each other - we skip over any ground truth values within 10 milliseconds of each other.
Source code in python/evalio/datasets/oxford_spires.py
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 | |
DatasetNotFound
Bases: CustomException
Exception raised when a dataset is not found.
Source code in python/evalio/datasets/parser.py
SequenceNotFound
Bases: CustomException
Exception raised when a sequence is not found.
Source code in python/evalio/datasets/parser.py
get_data_dir
Get the global data directory. This is where downloaded data is stored.
Returns:
-
Path–Directory where datasets are stored.
set_data_dir
Set the global location where datasets are stored. This will be used to store the downloaded data.
Parameters:
-
directory(Path) –Directory
Source code in python/evalio/datasets/base.py
all_datasets
all_datasets() -> dict[str, type[Dataset]]
Get all registered datasets.
Returns:
-
dict[str, type[Dataset]]–A dictionary mapping dataset names to their classes.
get_dataset
get_dataset(name: str) -> type[Dataset] | DatasetNotFound
Get a registered dataset by name.
Parameters:
-
name(str) –The name of the dataset to retrieve.
Returns:
-
type[Dataset] | DatasetNotFound–The dataset class if found, or a DatasetNotFound error.
Source code in python/evalio/datasets/parser.py
all_sequences
all_sequences() -> dict[str, Dataset]
Get all sequences from all registered datasets.
Returns:
-
dict[str, Dataset]–A dictionary mapping sequence names to their dataset classes.
Source code in python/evalio/datasets/parser.py
get_sequence
get_sequence(name: str) -> Dataset | SequenceNotFound
Get a registered sequence by name.
Parameters:
-
name(str) –The name of the sequence to retrieve.
Returns:
-
Dataset | SequenceNotFound–The dataset object if found, or a SequenceNotFound error.
Source code in python/evalio/datasets/parser.py
register_dataset
register_dataset(
dataset: Optional[type[Dataset]] = None,
module: Optional[ModuleType | str] = None,
) -> int | ImportError
Register a dataset.
Parameters:
-
dataset(Optional[type[Dataset]], default:None) –The dataset class to register. Defaults to None.
-
module(Optional[ModuleType | str], default:None) –The module containing datasets to register. Defaults to None.
Returns:
-
int | ImportError–The number of datasets registered or an ImportError.